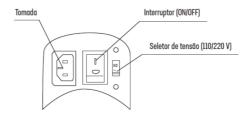

BOMBA DE VÁCUO SMART MANUAL DE INSTRUÇÃO

Sistemas de pressão podem causar acidentes se não forem manuseados corretamente. Ao detectar qualquer anomalia interrompa imediatamente o processo e investigue a causa. Sempre utilize os equipamentos de proteção individual durante o manuseio do equipamento.

COMPONENTES DA BOMBA

Figura 1



MANUAL DE OPERAÇÃO

Antes de operar;

Verifique a tensão,110V ou 220V, e se necessário ajuste através da chave seletora na parte traseira da bomba para a corrente adequada.

Figura 2

As bombas de vácuo Smart são dupla voltagem e seus motores são projetados para uma oscilação de corrente de 10% acima ou abaixo da corrente normal.

Certifique-se que a bomba esteja na posição "desligado" (OFF) observando a posição do interruptor ON/OFF antes de a bomba ser conectada a uma fonte de eletricidade.

Procedimento de enchimento de óleo:

Remova a tampa do reservatório de óleo e encha o até que o óleo apareça no fundo do visor. Consulte os dados técnicos (Tabela 1), quanto à capacidade correta de óleo para a bomba. Coloque a tampa do reservatório de óleo de volta e remova a tampa do acoplamento de entrada. Ligue a bomba, interruptor na posição "ligado" (ON) até que a bomba esteja funcionando em regime permanente (observe o ruído). Isso pode levar de 2 a 30 segundos, dependendo da temperatura ambiente. Depois que a bomba funcionar por aproximadamente um minuto, desligue, aguarde a descida do óleo e verifique no visor o nível, que deve estar alinhado com a linha do nível de óleo do visor. Se necessário, adicione ou retire óleo.

*Nota: O nível de óleo deve estar alinhado com a linha indicativa do visor quando a bomba estiver em funcionamento. Óleo em quantia insuficiente resultará em baixa performance de geração de vácuo. Óleo em quantia excessiva pode resultar em transbordamento no acoplador de exaustão.

Para desligar a bomba após o uso:

Para prolongar a vida útil e fazer com que a bomba ligue sem percalços, deve-se observar os seguintes procedimentos ao desligar a bomba.

- A. Desligar a válvula do manifold entre a bomba e o sistema.
- **B.** Remova a mangueira da entrada da bomba.
- **C.** Cubra as aberturas da porta de entrada para evitar contaminações ou que partículas entrem pela porta.

MANUTENÇÃO

O óleo tem três funções em uma bomba de vácuo: lubrificar, refrigerar e selar os componentes de geração de vácuo. Seu estado e qualidade influenciam na durabilidade da bomba e no vácuo. A condição e o tipo de óleo utilizado em qualquer bomba de vácuo são extremamente importantes para determinar o máximo de vácuo que pode ser obtido. Recomenda-se usar óleo de bombas à vácuo de alta performance, que é feito especificamente para oferecer viscosidade máxima a temperaturas de funcionamento normais e para facilitar o acionamento da bomba em temperaturas baixas.

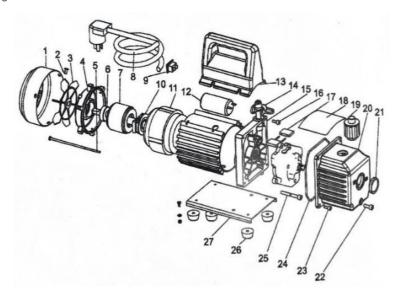
Procedimento de troca de óleo;

Com a bomba aquecida, remova a tampa do dreno de óleo. Drene todo o óleo contaminado e coloque em um recipiente. Pode-se remover o óleo da bomba ao abrir a entrada e bloquear parcialmente o acoplador com um pano, enquanto a bomba funciona. Não utilize esse método para operar a bomba por mais de 20 segundos pois as palhetas podem trabalhar sem lubrificação e se danificarem por atrito. Quando a drenagem do óleo for finalizada, incline a bomba para frente para remover o restante do óleo. Coloque a tampa do dreno do óleo de volta. Descarte o óleo de maneira apropriada.

Caso o óleo esteja muito contaminado ou com borra, talvez seja necessário remover o reservatório e limpá-lo internamente.

*Nota: Não utilize detergentes ou solventes para limpeza interna em funcionamento, (substituindo ou misturando no óleo), pois danifica os elementos internos devido à grande fricção.

Para a reposição do óleo, siga o Procedimento de enchimento de óleo descrito anteriormente.


GUIA PARA SOLUÇÃO DE PROBLEMAS

Problema:	Verificar:
Problemas para ligar:	Verifique a voltagem operacional. As bombas funcionam com variação de mais ou menos 10% na tensão e defeitos no interruptor podem ocorrer se a voltagem máxima for excedida.
Vazamento de óleo na tampa do reservatório;	óleo pouco viscoso, óleo acima do nível em operação, bomba inclinada, saturação do material de absorção da tampa.
Vazamento de no tampão do dreno;	verifique o aperto do parafuso do dreno e as condições do anel de vedação.
Vazamento for no flange entre o motor e o rotor;	verifique a junta de acoplamento ou a vedação do eixo.
Não é possível obter um bom vácuo;	Monitore a estanqueidade do sistema com um vacuômetro posicionando uma válvula bola logo à saída da bomba. Em caso de oscilação ou pela perda de vácuo, verifique as conexões ou pontos suspeitos de vazamentos.
Estado do óleo:	Óleo contaminado altera a viscosidade comprometendo a selagem dos componentes o que influencia no vácuo final.

VISTA EXPLODIDA

Figura 3

- 1. Proteção do ventilador
- 2. Parafuso
- 3. Ventilador
- 4. Proteção do motor
- 5. Parafuso
- 6. Rolamento
- 7. Rotor do motor
- 8. Cabo de Alimentação
- 9. Chave seletora de tensão
- 10. Interruptor centrífugo
- 11. Estator do motor
- 12. Capacitor
- 13. Alça
- 14. Acoplamento de entrada

- 15. Flange da câmara de vácuo
- 16. Parafuso
- 17. Palhetas
- 18. Capa da placa
- 19. Acoplador de exaustão
- 20. Armazenamento
- 21. Visor
- 22. Válvula de dreno de óleo
- 23. Parafuso
- 24. Selo de vedação
- 25. Anteparo
- 26. Pé de borracha
- 27. Base

ESPECIFICAÇÕES TÉCNICAS

Tabela 1

	SMART 1.8 S	SMART 3 S	SMART 6 S	SMART 5 D	SMART 6 D
Fluxo de vácuo	1.8 CFM	3 CFM	6 CFM	5 CFM	6 CFM
	43 L/min	86 L/min	172 L/min	149 L/min	172 L/min
Vácuo final	150 Mícrons	150 Mícrons	150 Mícrons	15 Mícrons	15 Mícrons
Estágios	1	1	1	2	2
Power	1/4 HP	1/4 HP	1/2 HP	1/2 HP	1/2 HP
Conexões de entrada	1/4" SAE	1/4" SAE	1/4" SAE e 3/8"SAE	1/4" SAE e 3/8"SAE	1/4" SAE e 3/8"SAE
Dimensões (mm)	240 x 110 x 220	255 x 110 x 220	280 x 110 x 230	280 x 110 x 230	280 x 110 x 230
Peso	6.0kg	6.0kg	7.8kg	9.8kg	11.3kg

	SMART 7 D	SMART 9 S	SMART 12 D	SMART 14 D
Fluxo de vácuo	7 CFM	9 CFM	12 CFM	14 CFM
	200 L/min	258 L/min	344 L/min	444 L/min
Vácuo final	15 Mícrons	15 Mícrons	15 Mícrons	15 Mícrons
Estágios	2	2	2	2
Power	3/4 HP	3/4 HP	1 HP	1 HP
Conexões de entrada	1/4" SAE e 3/8"SAE	1/4" SAE e 3/8"SAE	1/4" SAE e 3/8"SAE	1/4" SAE e 3/8"SAE
Dimensões (mm)	360 x 120 x 250	360 x 120 x 250	430 x 135 x 260	430 x 135 x 260
Peso	11.4kg	11.8kg	18.7kg	18.9kg

BOMBA DE VÁCUO SMART

MANUAL DE INSTRUÇÃO

www.friven.com.br

fofrivenrefrigeracao

Importado e Distribuído por: CNPJ: 93.064.137/0002-71.